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Abstract. In this paper we characterize minimal numerical-radius extensions
of operators from finite-dimensional subspaces and compare them with mini-
mal operator-norm extensions. We note that in the cases Lp, p = 1,∞, and
in the case of self-adjoint extensions in L2, the two extensions and their norms
are equal.

We also show that, in the case of Lp, 1 < p < ∞, and more generally in the
case of the dual space being strictly convex, if the minimal projections with
respect to the operator norm and with respect to the numerical radius have
equal norms, then the operator norm is 1. An analogous result is also true for
an arbitrary extension. Finally, we provide an example of a projection from lp3
onto a two-dimensional subspace which is minimal with respect to norm but
not with respect to the numerical radius for p �= 1, 2,∞, and we determine the
minimal numerical-radius projection in this same situation.

1. Introduction

A projection from a normed linear space X onto a subspace V is a bounded linear
operator P : X → V having the property that P |V = I. P is called a minimal
projection if ‖P‖ is the least possible. It is known (see [11]) that for a Banach space
X and a subspace V ⊂ X, if V = Z∗ for some Banach space Z, then there exists
a minimal projection P : X → V . In this paper we consider projections where the
space V is finite-dimensional and thus (V ∗)∗ = V .

In general, a given subspace will not be the range of a projection of norm 1, and
the projection of least norm is difficult to discover even if its existence is known a
priori. A well-known example of the difficult nature of such problems is that the
minimal projection of C[0, 1] onto the subspace π3 of polynomials of degree less
than or equal to 3 is unknown. For an explicit determination of the projection of
the minimal norm from the space C[−1, 1] onto π2, see [8]

Let X be a Banach space and V = [v1, v2, ..., vn] be a finite-dimensional subspace
of X. Suppose T : V → V . We would like to extend T to T̃ : X → V such
that the numerical radius w(T̃ ) of T̃ is as small as possible. Notice that when
T = I, we are considering minimal numerical-radius projections, and if dimV =
1, then the extension is the Hahn-Banach extension in the context of numerical
radius. The motivation to study extensions or projections with respect to numerical
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radius stems from several factors. First, as we will present in the following section,
numerical radius is a “natural” concept in Hilbert spaces, and in Hilbert spaces
projections have desirable properties. The second reason is the inequality w(T ) ≤
‖T‖. Therefore, there are more spaces for which ‖T‖ ≥ 1 but w(T ) = 1. Moreover,
considering extension properties with respect to numerical radius is exactly an n-
dimensional Hahn-Banach theorem, as illustrated in Example 2.2 below.

In this paper our aim is to characterize minimal numerical-radius extensions
of operators from finite-dimensional subspaces and compare them with minimal
operator-norm extensions. We note that in the cases Lp, p = 1,∞, and in the case
of self-adjoint extensions in L2, the two extensions and their norms are equal. (This
result is well known and we provide a simple proof for the sake of completeness.)
Consequently, all known theorems for minimal operator-norm extensions in the
cases of L1 and L∞ also apply to minimal numerical-radius extensions in these
settings.

We also show that in the case of Lp, 1 < p < ∞, and more generally in the case
of the dual space being strictly convex, if the minimal projection with respect to the
operator norm and that with respect to numerical radius have equal norms, then
that operator norm is 1. This result should be viewed together with the result of
A. E. Taylor [18], where it is proved that if the unit sphere in the conjugate space
is strictly convex, then every continuous linear functional on an arbitrary linear
subspace of X has a unique extension without increase of norm to all of X. (S. R.
Foguel in [13] proves the converse. Namely, if X∗ is not strictly convex, then there
exists a bounded linear functional defined on a linear subspace of X for which the
norm-preserving linear extension to X is not unique.)

Finally, we provide an example of a projection from lp3 onto a two-dimensional
subspace which is minimal with respect to norm, but not with respect to the nu-
merical radius, for p �= 1, 2,∞. We also determine the minimal numerical-radius
projection in this same situation. Here, once again, we have uniqueness of the
projections. This follows from the result of V.P. Odinec. In [17], he proves that
minimal projections of norm greater than one from a three-dimensional Banach
space onto any of its two-dimensional subspaces are unique.

2. Characterization of minimal numerical-radius extensions

In this section we give definitions of basic concepts, which lead us to a charac-
terization (in Theorem 2.1) of minimal numerical-radius extensions. Throughout
the paper, X is a Banach space, X∗ is its dual and the field is the real numbers
R or the complex numbers C. The transformation T taking a finite-dimensional
subspace V = [v1, v2, . . . , vn] of X into itself is given by

T =
n∑

i=1

ui ⊗ vi : V → V = [v1, v2, . . . , vn] ⊂ X, where ui ∈ V ∗,

and

T̃ =
n∑

i=1

ũi ⊗ vi : X → V, where ũi ∈ X∗.

Clearly, T̃ is an extension of T to all of X. In this paper we will investigate the
conditions, under which T̃ has as small a (possibly minimal) numerical radius as
defined in Definition 2.4 below.
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Following the usual practice, let B(X) and S(X) denote the closed unit ball
and unit sphere of X, respectively. Let B = B(X, V ) be the space of all bounded
linear operators from X into a finite-dimensional subspace V of X. Let T be the
family of all operators in B(X, V ) with a given action on V (e.g., the identity action
corresponds to the family of bounded projections onto V ). Finally, 〈x, x∗〉 denotes
the action of x∗ ∈ X∗ on x ∈ X.

Before defining an extremal of x ∈ X, we consider the example of the classical
Hölder Inequality. For suitable conjugate pairs p and q and (for simplicity) for
fg �= 0 a.e., if X = Lp and X∗ = Lq, then |〈f, g〉| ≤ ‖f‖p‖g‖q with equality if and
only if α(sgn f)|f |p = β(sgn g)|g|q a.e. for some constants α, β with αβ > 0. In the
case of equality, we say g is an extremal of f and f is an extremal of g, and write
g = (α/β)1/q(sgn f)|f |p/q =: ext f or f = (β/α)1/p(sgn g)|g|q/p =: ext g.

Definition 2.1. Let X denote a Banach space. If x ∈ X and x∗ ∈ X∗ are such that
|〈x, x∗〉| = ‖x‖ · ‖x∗‖ �= 0, then x∗ is an extremal of x and we write x∗ = ext x.
Similarly x is an extremal of x∗, written x = ext x∗.

Note that ext x multiplied by any nonzero scalar factor is still an extremal of
x. Note further that, if X is not smooth, for some x there may be many x∗ (which
differ by more than a scalar multiple) that are extremals of x. The fact that, for
each x, there may be more than one extremal and that neither x nor ext x is
necessarily normalized is not important for our purposes because the operator ET̃
(see (1) below) is a positive combination of dyads (y ⊗ ext y).

Definition 2.2. If T is a bounded linear map on X, the numerical range W (T )
and the numerical radius w(T ) are defined by

W (T ) = {〈Tx, x∗〉 : (x, x∗) ∈ S(X) × S(X∗), 〈x, x∗〉 = 1}

and

w(T ) = sup {|λ| : λ ∈ W (T )} .

In the above definition of the numerical range the condition 〈x, x∗〉 = 1 implies
that the points considered are of the type (x, x∗) = (ext x∗, x∗).

Moreover, W (T ) ⊂ {〈Tx, x∗〉 : (x, x∗) ∈ B(X) × B(X∗)} and w(T ) ≤ ‖T‖.
Naturally, for ‖T‖ we are taking “the supremum” over (x, x∗) ∈ B(X)×B(X∗) but
for w(T ) “the supremum” is taken over those (x, x∗) for which 〈x, x∗〉 = 1. Quite
often w is actually a norm equivalent to the operator norm ‖ · ‖.

These definitions lead us to the notion of the numerical index, n(X), of the
space X. This constant is defined by n(X) = inf {w(T ) : T ∈ B(X), ‖T‖ = 1}.
Note that 0 ≤ n(X) ≤ 1, n(X) > 0 if and only if w and ‖ · ‖ are equivalent norms,
and n(X) = 1 if and only if w(T ) = ‖T‖ for all T ∈ B(X).

A complete survey of numerical ranges, their close relation to spectral theory
and their applications can be found in [2], [10] and [14].

If T : H → H is a bounded linear operator on a Hilbert space, then the numerical
radius takes the form w(T ) = sup {|〈Tx, x〉| : ‖x‖ = 1}, because for each linear
functional x∗ there is a unique x0 ∈ H such that x∗(x) = 〈x, x0〉 for all x ∈ H.
Moreover, if T is a self-adjoint or a normal operator on a Hilbert space H, then
‖T‖ = w(T ). Notice also that if a nonzero T : H → H is self-adjoint and compact,
then T has an eigenvalue λ such that w(T ) = ‖T‖ = λ.
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These properties of the numerical radius together with the properties of orthog-
onal projections from Hilbert spaces onto closed subspaces are the motivation to
investigate minimal extensions or projections with respect to the numerical radius.

Definition 2.3. We call (x, y) = (ext y, y) ∈ S(X∗∗)× S(X∗) a diagonal extremal
pair for T̃ ∈ B(X, V ) if 〈T̃ ∗∗x, y〉 = w(T̃ ), where T̃ ∗∗ : X∗∗ → V is the second
adjoint extension for T̃ and V = [v1, v2, . . . , vn] ⊂ X.

To clarify our notation, note that the map T̃ has the expression

T̃ =
n∑

i=1

ũi ⊗ vi : X → V

and T̃ x =
∑n

i=1〈x, ũi〉vi with ũi ∈ X∗, vi ∈ V , where 〈x, ũi〉 denotes the functional
ũi, is acting on x. The map T̃ ∗∗ can be expressed as

T̃ ∗∗ =
n∑

i=1

ui ⊗ vi : X∗∗ → V

and T̃ ∗∗x =
∑n

i=1〈ui, x〉vi with ui ∈ X∗∗∗, vi ∈ V (x ∈ X∗∗) and 〈ui, x〉 denotes
the action of x on ui.

The set of all diagonal extremal pairs will be denoted Ew(T̃ ),

Ew(T̃ ) =

{
(ext y, y) ∈ S(X∗∗) × S(X∗) :

n∑
i=1

〈ext y, ui〉 · 〈vi, y〉 = w(T̃ )

}
.

To each (x, y) ∈ X∗∗×X∗ associate the rank-one operator y⊗x : X → X∗∗ given
by

(y ⊗ x)(z) = 〈z, y〉x

for z ∈ X. Accordingly, to each (x, y) ∈ Ew(T̃ ) associate the rank-one operator
y ⊗ ext y : X → X∗∗ given by

(y ⊗ ext y)(z) = 〈z, y〉 ext y

for z ∈ X. The usual definition for the set of all extremal pairs for T̃ , denoted E(T̃ ),
is given in [5] as:

E(T̃ ) =

{
(x, y) ∈ S(X∗∗) × S(X∗) :

n∑
i=1

〈x, ui〉 · 〈vi, y〉 = ‖T̃‖
}

.

In the case of diagonal extremal pairs we require |〈ext y, y〉| = 1.

Definition 2.4. Let T =
∑n

i=1 ui ⊗ vi : V → V = [v1, v2, . . . , vn] ⊂ X, where
ui ∈ V ∗ and X is a Banach space. Let T̃ =

∑n
i=1 ũi ⊗ vi : X → V be an

extension of T to all of X. We say T̃ is a minimal numerical-radius extension of T

if w(T̃ ) = inf {w(S) : S : X → V and S|V = T}. Clearly w(T ) ≤ w(T̃ ).

Theorem 2.1 (Characterization). T̃ is a minimal numerical-radius extension of
T (if T = I, T̃ = P is a minimal numerical-radius projection from X onto V ) if
and only if the closed convex hull of {y ⊗ x}, where (x, y) ∈ Ew(T̃ ), contains an
operator for which V is an invariant subspace.
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Proof. One can appropriately modify the proof given in [5], Theorem 1, as follows.
The problem is equivalent to best approximating, in the numerical-radius norm, a
fixed operator T0 ∈ T from the space of operators D = {∆ ∈ B : ∆ = 0 on V } =
sp{δ ⊗ v : δ ∈ V ⊥, v ∈ V }. Let K = B(X∗∗) × B(X∗) endowed with the product
topology, where B(·∗) denotes the unit ball with its weak∗ topology. Then K is
compact. Let

Kw = K ∩ Diag = {(x, y) ∈ B(X∗∗) × B(X∗) : x = ext(y) or x = 0}.
Then Kw is compact since K ∩ Diag is a closed subset of K, as can be seen from
the following argument. Take {(xi, yi)}i∈I a net in Kw and (x, y) ∈ X∗∗×X∗ such
that (xi, yi) converges weak∗ to (x, y). Clearly (x, y) ∈ B(X∗∗) × B(X∗). Now
consider two cases:

1) If x = 0, we are done since (0, y) ∈ Kw.
2) If x �= 0, we have to prove that x = ext(y), that is, |x(y)| = ‖x‖‖y‖. We have

‖x‖ ≤ lim inf
i

‖xi‖ and ‖y‖ ≤ lim inf
i

‖yi‖;

therefore
‖x‖‖y‖ ≤ lim

k
‖xik

‖‖yik
‖ = lim

k
|xik

(yik
)|.

Setting
xik

(yik
) = xik

(yik
− y) + (xik

− x)(y) + x(y)
and replacing X∗ by V ∗, we obtain that {yi} is strongly convergent to y, which
implies ‖x‖ ‖y‖ ≤ |x(y)|, which obviously leads to ‖x‖‖y‖ = |x(y)|. This shows
that Kw is closed.

Thus the set E(T̃ ), being the set of points where a continuous (bilinear) function
achieves its maximum on a compact set, is not empty.

Associate with any operator Q ∈ B the bilinear form Q̂ ∈ C(Kw) via Q̂(x, y) =
〈Q∗∗x, y〉, and let D̂ = {∆̂ : ∆ ∈ D}. Then, making use of standard duality
theory for C(Kw), Kw compact (see e.g., [15], Theorem 1.1 (p.18) and Theorem
1.3 (p.29)), we have that T̂ = T̂0 − ∆̂0 is of minimal norm if and only if there exists
a finite, nonzero (total mass one) signed measure µ̂ supported on the critical set

Cw(T̂ ) := {(x, y) ∈ (S(X∗∗) × S(X∗)) ∩ Diag : |T̂ (x, y)| = w(T̃ )}

such that sgn µ̂{(x, y)} = sgn T̂ (x, y) and µ̂ ∈ D̂⊥, i.e.,

0 =
∫
Cw(T̂ )

∆̂ dµ̂ for all ∆̂ ∈ D̂.

But now, since any Q̂ ∈ {T̂} ∪ D̂ is a bilinear function, we can replace the signed
measure µ̂, supported in Cw(T̂ ), by a positive measure µ supported on Ew(T̃ ) ⊂
Cw(T̂ ) by noting that

Cw(T̂ ) = {(x, eiθy) : (x, y) ∈ Ew(T̃ ) and θ ∈ I},
where I = [0, 2π) in the complex case and I = {0, π} in the real case, and setting

µ{(x, y)} = |µ̂|{(x, eiθy) : θ ∈ I}.

Then sgnµ{(x, y)} = sgn T̂ (x, y) = 1 for (x, y) ∈ Ew(T ), and

0 =
∫
Ew(T̃ )

∆̂ dµ for all ∆ ∈ D,
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since ∫
Cw(T̂ )

∆̂ dµ̂ =
∫

(x,y)∈Ew(T̃ )
θ∈I

∆̂(x, eiθy) dµ̂(x, eiθy)

=
∫

(x,y)∈Ew(T̃ )
θ∈I

e−iθ ∆̂(x, y) eiθ d|µ̂|(x, eiθy) =
∫
Ew(T̃ )

∆̂ dµ.

Hence,

0 =
∫
Ew(T̃ )

∆̂ dµ =
∫
Ew(T̃ )

〈∆∗∗x, y〉dµ(x, y)

=
∫
Ew(T̃ )

〈x, δ〉〈v, y〉dµ(x, y) =

〈∫
Ew(T̃ )

〈v, y〉x dµ(x, y), δh

〉
for all ∆ = δ ⊗ v (δ ∈ V ⊥, v ∈ V ), where, for z ∈ X,

∫
Ew(T̃ )

〈z, y〉x
< dµ(x, y) is the element w ∈ X∗∗ defined by 〈x∗, w〉 =

∫
Ew(T̃ )

〈z, y〉〈x∗, x〉 dµ(x, y)

for all x∗ ∈ X∗. T̃ is minimal, therefore, if and only if
∫
Ew(T̃ )

〈v, y〉x dµ(x, y) ∈
(V ⊥)⊥ = V , i.e., if and only if there exists an operator (from X into X∗∗)

ET̃ =
∫
Ew(T̃ )

y ⊗ x dµ(x, y) : V → V. (1)

The proof of the theorem is complete. �

Remark 2.1. The existence of a minimal projection as characterized in Theorem
2.1 follows from [11] and the fact that V is a finite-dimensional subspace of X.
In the proof of Theorem 2.1 we used Singer’s identification (see [15], Theorem 1.1
(p.18) and Theorem 1.3 (p.29)) of finding a minimal operator as the error of best
approximation in C(K) for K compact. It is possible to use other methods, such as
the Kolmogorov criterion for best approximation (see [15], Theorem 1.16 (p.69)).

Remark 2.2. We can restate Theorem 2.1 as follows:
T̃ is a minimal numerical radius extension of T if and only if there exists a

probability measure µ on Ew(T̃ ) such that for (x, y) ∈ Ew(T̃ ), the operator ET̃ :
X → X∗∗ defined by

(1) ET̃ :=
∫

y ⊗ x dµ(x, y)

maps V into V .
Moreover, by taking a fixed basis �v = (v1, v2, . . . , vn) for V , one can write (1) as

the system of n equations

(2)
∫
〈�v, y〉x dµ(x, y) = M�v

for some matrix M .

Notice that the family T of operators in B(X, V ) with a given action on V can
be expressed as

T =

{
n∑

i=1

ui ⊗ vi : 〈vi, uj〉 = Aij for A a given fixed n × n matrix

}
.
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The matrix M in equation (2) may be regarded as a function of this matrix A.
Hence, equation (2) can determine a minimal numerical radius of T̃ , up to n2

entries of M .
The following elementary examples illustrate Theorem 2.1 and tell us what to

take as the map ET̃ .

Example 2.1 (Hilbert space case). Let X be a Hilbert space and let �v =
{v1, v2, . . . , vn} be an orthonormal basis for V . Let T have a fixed “diagonal”
action, i.e., Aij = diδij , where d = (d1, d2, . . . , dn) is a fixed n-tuple of scalars, and
let λ = maxi |di| = |di0 |.

Then T̃ =
∑n

i=1 divi ⊗ vi has a minimal numerical-radius because we can find
diagonal extremal pairs of the form (σz, z) with z an arbitrary norm-1 element of
the eigenspace corresponding to a maximum eigenvalue |di0 | and σ = sgn di0 . (Note
that ‖T̃‖ = λ. Then 〈T̃ σz, z〉 = λ. Thus ET̃ = z ⊗ σz for any choice of z described
above.)

Example 2.2. The following example provides us with another reason to study
minimal extensions with respect to the numerical radius. It turns out that for the
case n = 1 (dimV = 1) the minimal numerical-radius extension corresponds to
the classical Hahn-Banach extension. To see this, consider a rank-one projection
P = u ⊗ v, such that

‖P‖ = sup
‖x‖=‖y‖=1

〈x, u〉 · 〈v, y〉 = ‖u‖ · ‖v‖ ≥ 〈u, v〉 = 1.

Since P is a projection, 1 ≤ w(P ) ≤ ‖P‖, but in the minimal case we have the
equality ‖P‖ = w(P ) because ‖P‖ = 1. For this reason, studying minimal w(P ) for
higher dimensions can also be viewed as an n-dimensional Hahn-Banach theorem.

3. Diagonal extremal pairs and minimal projections in Lp
, p = 1, 2,∞

Throughout the remainder of this paper, in the case of L1, it will be assumed that
(Λ, Σ, µ) is a measure space for which (L1)∗ = L∞. For example, (L1)∗ = L∞ if the
measure space (Λ, Σ, µ) is σ-finite. We write L1 = L1(Λ, Σ, µ) and Lp = Lp(Λ, Σ, µ).

The following result is well known and follows from the fact (see [2], §9, and [12])
that n(Lp) = 1 for p = 1,∞, and the fact that self-adjoint operators have numerical-
radius equal to the operator-norm. We state this fact as a theorem (and include
a proof for the sake of completeness), so that we can mention several corollaries,
which are the results of recent work, and so that we can apply this theorem in
Example 4.2 after Theorem 4.1 below.

Theorem 3.1 (When extensions coincide). In the cases X = Lp, p = 1,∞, the
minimal numerical-radius extensions and the minimal operator-norm extensions
coincide, with the same norms. Also in the case of self-adjoint extensions in L2,
the two extensions (with respect to norm and with respect to numerical radius) and
their respective norms are equal.

Proof. In the case p = 1, it is well known that ‖T̃‖ = supt∈Λ L(t), where L(t) is
the so-called Lebesgue function of T̃ , defined as

L(t) =
∫

Λ

∣∣∣∣∣
n∑

i=1

ui(t)vi(s)

∣∣∣∣∣ dµ(s) = ‖
n∑

i=1

ui(t)vi‖L1 .
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Similarly, in the case p = ∞, ‖T̃‖ = supt∈Λ L(t), where L(t) is the Lebesgue
function of T̃ , defined as

L(t) =
∫

Λ

∣∣∣∣∣
n∑

i=1

ui(s)vi(t)

∣∣∣∣∣ dµ(s) = ‖
n∑

i=1

vi(t)ui‖L1 .

Thus in both cases we see that the extremal pairs (used in minimal operator
extensions) are of the form (ext y, y), where y ∈ B(X∗). In fact in the case L1,
(ext y, y) = (δt, sgn(�u(t) · �v)) and in the case L∞, (ext y, y) = (sgn(�u · �v(t)), δt),
where δt denotes the usual “delta” function at t. The set of all diagonal critical
pairs will be denoted Cw(T̃ ),

Cw(T̃ ) = {(ext y, y) ∈ S(X∗∗) × S(X∗) :
n∑

i=1

〈ext y, ui〉 · 〈vi, y〉 = σw(T̃ ), |σ| = 1

}
.

The set of all diagonal pairs will be denoted C(T̃ ),

C(T̃ ) = {(ext y, y) ∈ S(X∗∗) × S(X∗) :
n∑

i=1

〈ext y, ui〉 · 〈vi, y〉 = σ‖T̃‖, |σ| = 1

}
.

Thus, in the cases p = 1, ∞, C(T̃ ) ⊂ Cw(T̃ ), but since w(T̃ ) ≤ ‖T̃‖ in these cases,
the conclusion follows immediately.

In the case p = 2, for any self-adjoint operator, we have ‖T̃‖ = w(T̃ ) = |λ|, where
λ is the maximum (in modulus) eigenvalue. Indeed in this case ‖T̃‖ = w(T̃ ) =
|〈T̃ x, x〉|, where x is a norm-1 “maximum” eigenvector. The proof of the theorem
is complete. �

Corollary 3.1 (Maximal Spaces). The maximal spaces with respect to the numeri-
cal radius coincide with the maximal spaces with respect to the operator norm. Here
by “maximal space with respect to the numerical radius” we mean an n-dimensional
space V yielding sup w(T̃ ), where T̃ is given in Definition 2.4 with T = I. “Maximal
space with respect to the operator norm” is defined similarly.

Proof. It is well known (e.g., see [19]) that L∞ is a “maximal overspace” for any
finite-dimensional Banach space. Since in the case L∞, however, the minimal
numerical-radius extensions and the minimal operator-norm extensions coincide,
the result follows. (It is also known that isometric copies of the maximal symmet-
ric spaces lie in L1 (see [4]) and that isometric copies of the maximal (unrestricted)
spaces lie in L1 (see [16]).) �

Corollary 3.2. Let T =
∑2

i=1 ui ⊗ vi : V → V = [v1, v2] ⊂ X, where ui ∈ V ∗

and X is a Banach space. Let T̃ =
∑2

i=1 ũi ⊗ vi : X → V be a minimal numerical-
radius extension of T to all of X. When the field is R there exists a rank-2 T such
that w(T ) = w(T̃ ) for all X if and only if the unit ball of V is either not smooth
or not strictly convex.
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Proof. The result follows from the fact that any such space is isometric to a subspace
of L1, from the fact that L1 is a “maximal overspace” for any such space, from
Theorem 3.1, and from [9]. �

Remark 3.1. In the case of X = L1, just as in [6], there is a simple geometric
description for T .

Remark 3.2. Note that the condition of self-adjointness is critical in the L2 case
of the above theorem. If, for example, the field is R and T : 	22 → 	22 is given
by T (x1, x2) = (−x2, x1), then w(T ) = sup‖x‖=1〈Tx, x〉 = 0, while ‖T‖ = 1.
Thus, if the field is R, then n(	22) = 0. However, note that if the field is C, then
w(T ) = ‖T‖ = 1. Indeed, if the field is C, then in all cases w(T ) ≤ ‖T‖ ≤ 2w(T )
(e.g., see [10]).

4. Minimal projections with respect to the numerical radius in Lp

Following is an example of a particular projection which remains minimal with
respect to norm and with respect to numerical radius simultaneously. Similar pro-
jections are considered in [1].

Example 4.1. Consider the Rademacher functions ri(t) = (−1)[2
it], for 0 ≤ t ≤

1, i = 1, 2, . . . , n. For �r = (r1, r2, . . . , rn), let [�r] be the space spanned by the
Rademacher functions. It can be seen from the Khintchine inequality that 	n

2 ≈
[�r] ⊂ Lp[0, 1] for all 1 ≤ p ≤ ∞.

Let P : Lp[0, 1] → [�r] be the Rademacher projection given as P =
∑n

i=1 ri ⊗ ri.
In [7], Theorem 3, it is proved that for n = 2, ‖P‖ = 1.

This result together with the inequality w(P ) ≤ ‖P‖ shows that the projection
P : Lp[0, 1] → [�r] with �r = (r1, r2) is minimal with respect to operator norms as
well as with respect to numerical radius.

Notation 4.1. Let P denote a minimal projection with respect to the operator
norm and let Pw denote a minimal projection with respect to the numerical radius.

Theorem 4.1 (Strictly convex spaces). Let X∗ be strictly convex. Then ‖P‖ =
w(Pw) implies that ‖P‖ = 1.

Proof. Let P =
∑n

i=1 ui ⊗ vi. Note that

‖P‖ ≥ w(P ) ≥ w(Pw) = ‖P‖

and hence ‖P‖ = w(P ). Let (x, y) = (ext y, y) ∈ E(P ). Next, letting �u =
(u1, · · · , un), we have

〈x, �u〉 · 〈�v, y〉 = 〈x, 〈�v, y〉 · �u〉 = ‖P‖

and thus x = ext〈�v, y〉 · �u = ext y. But since X∗ is strictly convex, we have also
that 〈�v, y〉 · �u = λy for some scalar λ, i.e., P ∗y = λy, since P ∗ =

∑n
i=1 vi ⊗ ui.

Furthermore P ∗ is also a projection, whence (P ∗)2 = P ∗, and thus λ = 1 or λ = 0.
But (x, y) = (ext y, y) ∈ E(P ) implies that (y, x) = (y, ext y) ∈ E(P ∗). Thus λ = 1
and so P ∗y = y implies that

1 = ‖y‖ = ‖P ∗y‖ = ‖P ∗‖ = ‖P‖.

�
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Example 4.2. (‖P‖ > 1) Consider a projection P : 	p
3 → V = [v1, v2] where

v1 = (1, 1, 1), v2 = (−1, 0, 1), which is minimal with respect to norm. Then P is
not minimal with respect to the numerical radius for p �= 1, 2,∞. In fact, we can
determine the projection Pw which is minimal with respect to the numerical radius
and note that w(Pw) �= ||P || as follows.

Observe that V = [v1 = (1, 1, 1), v2 = (−1, 0, 1)] is a two-dimensional subspace
of 	p

3. Since any projection is given by u1 ⊗ v1 + u2 ⊗ v2, it is easy to see that
u1 =

(
1−d
2 , d, 1−d

2

)
and u2 =

(
−1

2 , 0, 1
2

)
, so that P and Pw are determined up to

the one parameter d.
The generalized Lebesgue function for P can be expressed as

L(�e) = 〈x, �u〉 · 〈�v, y〉 = ‖〈x, �u〉 · �v‖p,

where
�e = 〈�v, y〉, x = ext(�e · �u) and ‖P‖ = sup

�e∈R2
L(�e).

Note that L(�e) = ‖〈x, �u〉 · �v‖p is homogeneous with respect to �e.
Note also that ‖�a · �v‖p = (|a1 + a2|p + |a1|p + |a1 − a2|p)

1
p .

In the case of the numerical radius, i.e., in the case of Pw, observe that we have
the following equations:

〈v2, y〉
〈v1, y〉

= e and therefore − y1 + y3 = e(y1 + y2 + y3);(3)

‖y‖q = 1 gives a second equation |y1|q + |y2|q + |y3|q = 1.(4)

Thus, in the case of the numerical radius, we need to modify the Lebesgue function
as follows:

L(e) = sup
K

〈ext y, �u〉 · 〈�v, y〉

where K = {y3 : 〈v2, y〉 = e〈v1, y〉 and ‖y‖q = 1}.
In both cases, by use of symmetry, we observe that L(e) = L(−e) and then solve

the following two equations for d and e:

L(e) = L(0),

L′(e) = 0.

It can then be determined numerically that for

p =
4
3
, q =

p

p − 1
= 4

(whence ext(�e · �u) = (u1 + eu2)3),

d = 0.420942..., e = 1.70761...,

resulting in (see also [3])
‖P‖ = 1.05251....

By Theorem 4.1 we already know w(Pw) �= ‖P‖, and setting

d = 0.422971..., e = 1.71662...,

actually results in
w(Pw) = 1.02751...

and it is the minimal possible (see the following remark).
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Remark 4.1. 1) It is seen that, on R, L(·) is strictly dominated by its values at 0
and e and −e.

Furthermore, an examination of (2) of Section 2 shows that µ must be supported
on at least 3 points [3]. It thus follows that P and Pw are indeed minimal.

2) Here once again, we have uniqueness of the projections. This follows from the
result of V.P. Odinec. In [17], he proves that minimal projections of norm greater
than one from a three-dimensional Banach space onto any of its two-dimensional
subspaces are unique.

3) For general p, ext�e · �u = sgn(�e · �u)|�e · �u|
q
p and so p = 4

3 yields the especially
simple case ext�e · �u = (�e · �u)3.

4) Similar reasoning and numerical results can be obtained in the general case
1 < p < ∞, p �= 2, and, as suggested by Theorem 3.1, w(Pw)/‖P‖ approaches 1 as
p approaches 1 or 2 or ∞.

Notation 4.2. Let T̃ denote a minimal extension of T with respect to the operator
norm and let T̃w denote a minimal extension with respect to the numerical radius.

Finally, it is easy to see that Theorem 4.1 and its proof extend as follows:

Theorem 4.2 (Strictly convex spaces). Let X∗ be strictly convex. Then ‖T̃‖ =
w(T̃w) implies that ‖T‖ = ‖T̃‖ .

Remark 4.2. For the case X = Lp, 1 < p < ∞, p �= 2, there is no analogue to the
linear (∗)-equation (for n > 1), as on p. 41 of [5], which holds for minimal operator-
norm extensions. This fact reflects the quadratic nature of the form of the minimal
numerical-radius extension. (In other words, the “diagonal” extremal pairs are of
the form (ext y, y) and not (x, y) where x and y are essentially “independent”.)
Thus the form

〈P ∗∗x, y〉 = 〈x, �u〉 · 〈�v, y〉
is bi-linear, while the form

〈P ∗∗ ext y, y〉 = 〈ext y, �u〉 · 〈�v, y〉
is quadratic in nature.

This essential aspect is also reflected in the difference of complexity between the
minimal operator-norm extension and the minimal numerical-radius extension in
the example after Theorem 4.1 above.

Remark 4.3. It follows from Theorem 4.1 that, if X∗ is strictly convex and if
‖P‖ �= 1, then ‖P‖ �= w(Pw). Notice that in this theorem we are comparing the
norm and numerical radius of two kinds of minimal extensions P and Pw for which
w(Pw) = ‖P‖. Earlier, in Theorem 3.1, we showed that, in the cases X = Lp, p =
1,∞, minimal numerical-radius extensions and minimal operator-norm extensions
coincide. Several questions arise from these theorems.

1) Consider one of these extensions, say P , and suppose w(Pw) = ‖P‖ where
‖P‖ is minimal. Does it follow that w(P ) is minimal too?

2) Lindenstrauss and Tzafriri’s characterization of Hilbert spaces by the uniform
boundedness of finite-rank projection constants suggests that a strengthened version
of Theorem 4.1 might be possible. Namely, if X∗ is strictly convex and X is not
a Hilbert space, is it true that there are many (at least one) finite-dimensional
subspaces for which ‖P‖ �= w(Pw)?
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